COLLE 17

Exercice 1

Déterminer les extrema locaux des fonctions suivantes :

1.
$$f(x,y) = y^2 - x^2 + \frac{x^4}{2}$$

2.
$$f(x,y) = x^3 + y^3 - 3xy$$

3.
$$f(x,y) = x^3 + y^3 - 9xy + 10$$

Exercice 2

Déterminer les extrema locaux de la fonction suivante : $f(x,y) = x^4 + y^4 - 4(x-y)^2$.

Exercice 3

Première partie: On considère la fonction g définie sur \mathbb{R}^{+*} par $g(x) = \ln(x) + 2x + 1$

1. Etudier les variations de g (limites comprises)

2. En déduire qu'il existe un unique réel $\alpha \in]0, e^{-1}[$ tel que $g(\alpha) = 0$

Deuxième partie: On considère la fonction f définie sur $\mathbb{R}^{+*} \times \mathbb{R}$ par

$$f(x,y) = x(\ln(x) + x + y^2)$$

1. Déterminer le seul point critique de f.

2. Etudier la nature de ce point critique.

3. Montrer qu'en ce point, f vaut $-\alpha(\alpha+1)$.

Exercice 4

On considère la fonction définie sur \mathbb{R}^2 par $f(x,y)=3x^2+2y^2-4x-3y+4xy+3$ et \mathcal{U} le fermé défini par $\mathcal{U}=\{(x,y) \text{ tels que } x\geqslant 0, y\geqslant 0, x+y\leqslant 1\}$.

1. Montrer que f admet un maximum et un minimum sur \mathcal{U} .

2. On considère l'ouvert $\Omega = \{(x,y) \text{ tels que } x > 0, y > 0, x + y < 1\}$. Déterminer l'extrema de f sur cet ouvert.

1

Exercice 5

Justifier la convergence des séries suivantes et calculer la somme.

1.
$$A = \sum_{k \ge 0} \frac{1}{2^k}$$

$$2. B = \sum_{n \geqslant 1} \frac{n}{2^n}$$

3.
$$C = \sum_{n \ge 1} \frac{1}{n(n+1)}$$