Exercice 1 - Un encadrement de e

Démontrer que, pour tout $n \ge 2$, on a

$$\left(1 + \frac{1}{n}\right)^n \le e \le \left(1 - \frac{1}{n}\right)^{-n}.$$

Exercice 2 - Positivité

Soit $g: \mathbb{R}_+ \to \mathbb{R}$ définie par $g(x) = (x-2)e^x + (x+2)$. Démontrer que $g \ge 0$ sur \mathbb{R}_+ .

Exercice 3 - Limites et croissances comparées

Déterminer la limite en $+\infty$ des fonctions suivantes :

1.
$$\ln(x) - e^x$$
 2. $\frac{x^3}{\exp(\sqrt{x})}$ 3. $\frac{\ln(1+e^x)}{\sqrt{x}}$ 4. $\frac{\exp(\sqrt{x})+1}{\exp(x^2)+1}$

Exercice 4 - Tangente à la courbe représentative du logarithme

Y-a-t-il un point de la courbe représentative du logarithme tel que la tangente à cette courbe représentative passant par ce point passe par l'origine?

EXERCICE 5 - Inégalités

Démontrer que, pour tout $x \ge 0$, on a

$$x - \frac{x^2}{2} \le \ln(1+x) \le x.$$

Exercice 6 - Système d'équations

Résoudre les systèmes d'équations suivantes :

1.
$$\begin{cases} x+y = 30 \\ \ln(x) + \ln(y) = 3\ln 6 \end{cases}$$
 2.
$$\begin{cases} x^2 + y^2 = 218 \\ \ln(x) + \ln(y) = \ln(91) \end{cases}$$

Exercice 7 - Surpuissante!

- 1. Déterminer le domaine de définition de la fonction $x \mapsto x^x$. Étudier les variations de cette fonction et ses limites aux bornes.
- 2. Soit $y \in \mathbb{R}$. Quel est le nombre de solutions de l'équation $y = x^x$, d'inconnue x > 0?

Exercice 8 - Équation

Résoudre l'équation $\cosh(x) = 2$.

Exercice 9 - Valeur exacte

Calculer

$$\arccos\left(\cos\frac{2\pi}{3}\right), \quad \arccos\left(\cos\frac{-2\pi}{3}\right), \quad \arccos\left(\cos\frac{4\pi}{3}\right), \quad \arccos\left(\sin\frac{17\pi}{5}\right).$$

1

EXERCICE 10 - Étude d'une fonction

Soit f la fonction $x \mapsto \arcsin\left(\frac{1+x}{1-x}\right)$. Donner son domaine de définition, son domaine de dérivabilité, puis étudier et tracer la fonction.

EXERCICE 11 - Forme algébrique, le retour

Déterminer la forme algébrique des nombres complexes suivants :

$$\mathbf{1}.z_1 = (2+2i)^6$$
 $\mathbf{2}.z_2 = \left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$ $\mathbf{3}.z_3 = \frac{(1+i)^{2000}}{(i-\sqrt{3})^{1000}}.$

Exercice 12 - Racines n-ièmes

Résoudre les équations suivantes :

1.
$$z^3 = 1 + i\sqrt{3}$$
 2. $z^6 = \frac{-4}{1 + i\sqrt{3}}$ 3. $z^5 = \frac{(1+i\sqrt{3})^4}{(1+i)^2}$.

EXERCICE 13 - Un calcul d'intégrale

Calculer $\int_0^{\pi/2} \cos^4 t \sin^2 t dt$.