COLLE 23

EXERCICE 1 - AL-1

Soient $\{\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3\}$ la base canonique de \mathbb{R}^3 , $w_1 = (1, -2, 0)$, $w_2 = (-1, 2, 0)$, $w_3 = (0, 0, 2)$ et u l'endomorphisme de \mathbb{R}^3 défini par la donnéee des images des vecteurs de la base :

$$u(\mathcal{E}_1) = w_1, u(\mathcal{E}_2) = w_2, u(\mathcal{E}_3) = w_3.$$

- 1. (a) Exprimer w_1 , w_2 , w_3 en fonction de \mathcal{E}_1 , \mathcal{E}_2 et \mathcal{E}_3 . En déduire la matrice de u dans la base canonique.
 - (b) Soit $W = (x, y, z) \in \mathbb{R}^3$. Calculer u(W).
- 2. (a) Trouver une base de ker(u) et une base de Im(u).
 - (b) Montrer que $\mathbb{R}^3 = \ker(u) \oplus \operatorname{Im}(u)$.
- 3. Déterminer $\ker(u-Id)$ et $\operatorname{Im}(u-Id)$ où Id désigne l'identité de \mathbb{R}^3 . En déduire que u-Id est un automorphisme de \mathbb{R}^3 .

Exercice 2 - AL-2

Soit $E = \mathbb{R}^3$. On note $\mathcal{B} = \{\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3\}$ la base canonique de E et u l'endomorphisme de \mathbb{R}^3 défini par la donnée des images des vecteurs de la base :

$$u(\mathcal{E}_1) = -2\mathcal{E}_1 + 2\mathcal{E}_3, u(\mathcal{E}_2) = 3\mathcal{E}_2, u(\mathcal{E}_3) = -4\mathcal{E}_1 + 4\mathcal{E}_3.$$

- 1. Écrire la matrice de u dans la base canonique.
- 2. Déterminer une base de ker u. u est-il injectif? peut-il être surjectif? Pourquoi?
- 3. Déterminer une base de Im u. Quel est le rang de u?
- 4. Montrer que $E = \ker u \bigoplus \operatorname{Im} u$.

Exercice 3 - Donnée par une matrice

On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ -1 & 2 & -2 \\ 0 & 3 & -1 \end{array}\right).$$

Donner une base de ker(f) et de Im(f).

Exercice 4 - Réduction

On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$M = \left(\begin{array}{rrr} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{array}\right).$$

1

Donner une base de $\ker(f)$ et de $\operatorname{Im}(f)$. En déduire que $M^n=0$ pour tout $n\geq 2$.

EXERCICE 5 - Avec un paramètre

Déterminer, suivant la valeur du réel a, le rang de la matrice suivante :

$$A = \begin{pmatrix} 1 & a & a^2 & a^3 \\ a & a^2 & a^3 & 1 \\ a^2 & a^3 & 1 & a \\ a^3 & 1 & a & a^2 \end{pmatrix}.$$

Exercice 6 - Surjective?

Soient α, β deux réels et

$$M_{\alpha,\beta} = \left(\begin{array}{cccc} 1 & 3 & \alpha & \beta \\ 2 & -1 & 2 & 1 \\ -1 & 1 & 2 & 0 \end{array} \right).$$

Déterminer les valeurs de α et β pour lesquelles l'application linéaire associée à $M_{\alpha,\beta}$ est surjective.

Exercice 7 - Deux matrices semblables

Soit
$$M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$
 et $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix}$. Le but de l'exercice est de démontrer que M et

D sont semblables. On note f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est M.

- 1. Démontrer qu'il existe $u_1 \in \mathbb{R}^3$ tel que $\text{vect}(u_1) = \text{ker}(f Id)$. De même, prouver l'existence de $u_2, u_{-4} \in \mathbb{R}^3$ tels que $\text{vect}(u_2) = \text{ker}(f 2Id)$ et $\text{vect}(u_{-4}) = \text{ker}(f + 4Id)$.
- 2. Démontrer que (u_1, u_2, u_{-4}) est une base de \mathbb{R}^3 .
- 3. Conclure.

Exercice 8 - Application linéaire définie sur les matrices

Soient
$$A = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$$
 et f l'application de $M_2(\mathbb{R})$ dans $M_2(\mathbb{R})$ définie par $f(M) = AM$.

- 1. Montrer que f est linéaire.
- 2. Déterminer sa matrice dans la base canonique de $M_2(\mathbb{R})$.

Exercice 9 - Matrice d'une projection

Soient, dans \mathbb{R}^3 , P le plan d'équation z=x-y et D la droite d'équation x=-y=z. Trouver la matrice dans la base canonique de \mathbb{R}^3 de la projection p de \mathbb{R}^3 sur P parallèlement à D.

Exercice 10 - Base adaptée à un endomorphisme dont le carré est nul

Soit
$$f \in \mathcal{L}(\mathbb{R}^3)$$
 tel que $f \neq 0$ et $f^2 = 0$.

- 1. Démontrer que $\dim(\ker(f)) = 2$.
- 2. En déduire qu'il existe une base \mathcal{B} de \mathbb{R}^3 dans laquelle la matrice de f est $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

2