Exercice 1:

PSI

On considère la série réllé $\sum_{n>0} \frac{(-1)^n}{4n+1}$.

Justifier sa convergence. On désigne alors par S sa somme, et par S_n sa somme partielle d'ordre n.

Ontrer que :
$$S_{n-1} = \int_0^1 \frac{1 - (-1)^n t^{4n}}{1 + t^4} dt$$
, pour tout $n \in \mathbb{N}^*$.

En déduire que :
$$S = \int_0^1 \frac{dt}{1 + t^4}$$
.

Exercice 2:

On considère la série de terme général : $u_n = \arctan \frac{1}{n^2 + n + 1}$

- 1. Montrer que la série $\sum u_n$ converge.
- 2. Entant donné $a \in \mathbb{R}_+$, vérifier que la fonction $g: x \mapsto \arctan\left(\frac{a-x}{1+ax}\right)$ est constante sur $[0; +\infty[$.
- 3. En déduire la valeur de la somme de la série $\sum u_n$.

Exercice 3:

Etant donné $A \in \mathbb{R}_+^*$, on pose, pour tout $n \ge 1$: $u_n = \frac{1}{1+A} \cdot \frac{1}{1+\frac{A}{2}} \cdot \cdots \cdot \frac{1}{1+\frac{A}{n}}$.

- 1. Montrer que si $A \leq 1$, la série $\sum u_n$ diverge. On suppose désormais que : A > 1.
- 2. On pose, pour tout $n/geq1: u_n' = n^A u_n, w_n = \ln(u_n')$ et $v = w_{n+1} w_n$.
 - (a) Montrer que la série $\sum v_n$ converge.
 - (b) Montrer alors que la suite (u'n) converge et a pour limite un réel strictement positif.
 - (c) En déduire la nature de la série $\sum u_n$.

Exercice 4:

Soit F la fonction déterminée par : $F(w) = \int_{-\infty}^{+\infty} e^{-t^2} \cos wt \, dt$

Montrer que F est dérivable sur \mathbb{R} . Montrer que F est solution d'une équation différentielle que l'on intégrera.

Calculer F(w), sachant que $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$.

Exercice 5:

Soit f la fonction déterminée par : $f(x) = \int_0^1 \frac{dt}{\sqrt{1 - xt^3}}$.

- 1. Quel est domaine de définition de f?
- 2. Montrer que f est de classe C^1 sur] $-\infty, 1$ [, continue sur] $-\infty, 1$].

Exercice 6:

Soit f la fonction de \mathbb{R} dans \mathbb{R} déterminée par $f(x) = \int_0^{+\infty} \sqrt{1 + tx} e^{-t^2} dt$.

- 1. Quel est l'ensemble de définition de f?
- 2. Etudier la continuité et la dérivabilité de f.
- 3. Montrer qu'au voisinage de $+\infty$, $f(x) \sim \sqrt{x} \int_0^{+\infty} \sqrt{t} e^{-t^2} dt$