DEVOIR SURVEILLE Nº4

Exercice 1:

Soit A l'ensemble des entiers naturels de l'intervalle [1; 46].

1. On considère l'équation

$$(E): 23x + 47y = 1$$

où x et y sont des entiers relatifs.

- (a) Donner une solution particulière (x_0, y_0) de (E).
- (b) Déterminer l'ensemble des couples (x, y) solutions de (E).
- (c) En déduire qu'il existe un unique entier x appartenant à A tel que $23x \equiv 1$ (47).
- 2. Soient a et b deux entiers relatifs.
 - (a) Montrer que si $ab \equiv 0$ (47) alors $a \equiv 0$ (47)) ou $b \equiv 0$ (47).
 - (b) En déduire que si $a^2 \equiv 1$ (47) alors $a \equiv 1$ (47) ou a $a \equiv -1$ (47).
- 3. (a) Montrer que pour tout entier p de A, il existe un entier relatif q tel que $p \times q \equiv 1$ (47). Pour la suite, on admet que pour tout entier p de A, il existe un unique entier, noté inv(p), appartenant à A tel que

```
p \times inv(p) \equiv 1 (47).
```

Par exemple:

$$inv(1) = 1 \text{ car } 1 \times 1 \equiv 1 \quad (47), \quad inv(2) = 24 \text{ car } 2 \times 24 \equiv 1 \quad (47),$$

 $inv(3) = 16 \text{ car } 3 \times 16 \equiv 1 \quad (47).$

- (b) Quels sont les entiers p de A qui vérifient p = inv(p)?
- (c) On rappelle que $46! = 46 \times 45 \times \cdots \times 2 \times 1$. Montrer que $46! \equiv -1$ (47).

Correction:

Soit A l'ensemble des entiers naturels de l'intervalle [1; 46].

1. On considère l'équation

$$(E): 23x + 47y = 1$$

où x et y sont des entiers relatifs.

- (a) (-2, 1) est une solution de (E) car $-2 \times 23 + 1 \times 47 = 1$.
- (b) (x ; y) solution de $(E) \Rightarrow 23x + 47y = 1$

$$\begin{cases} 23x + 47y & = 1 \\ -2 \times 23 + 1 \times 47 & = 1 \end{cases} \xrightarrow{\text{par soustraction}} 23(x+2) + 47(y-1) = 0 \Rightarrow 23(x+2) = 47(1-y)$$

Donc 23 divise 47(1-y), mais 47 et 23 sont premiers entre eux, d'après le théorème de Gauss, 23 divise 1-y.

Donc il existe un entier relatif k tel que 1 - y = 23k soit y = 1 - 23k

On a donc aussi, $23(x+2) = 47 \times 23k \iff x = 47k - 2$

On vérifie que, réciproquement, pour tout entier relatif k, (47k - 2; 1 - 23k) est bien solution de (E).

L'ensemble des solutions de (E) est l'ensemble des couples (47k-2;1-23k) où $k\in\mathbb{Z}$.

(c) $23x \equiv 1$ (47) \Leftrightarrow il existe $y \in \mathbb{Z}$, $23x = 1 - 47y \Leftrightarrow$ il existe $k \in \mathbb{Z}$, x = 47k - 2 et y = 1 - 23k

De plus $x \in A \Leftrightarrow 1 \leq 47k - 2 \leq 46 \Leftrightarrow 3 \leq 47k \leq 48$.

Or un seul multiple de 47 se trouve dans cet encadrement, c'est 47. Donc k=1 et x=45.

Le seul entier x appartenant à A tel que $23x \equiv 1$ (47) est 45.

- 2. Soient a et b deux entiers relatifs.
 - (a) $ab \equiv 0$ (47) \Leftrightarrow 47 divise ab.

Or 47 est un nombre premier, il apparait donc au moins dans l'une des deux décompositions de a ou de b. D'où le résultat.

- (b) $a^2 \equiv 1$ $(47) \Leftrightarrow a^2 1 \equiv 0$ $(47) \Leftrightarrow (a-1)(a+1) \equiv 0$ $(47) \stackrel{2a}{\Rightarrow} a 1 \equiv 0$ (47) ou $a+1 \equiv 0$ $(47) \cdots$
- 3. (a) Tout entier p de A est premier avec 47, donc le théorème de Bezout assure l'existence de $(q,\ s)$ entiers relatifs tels que qp+47s=1.

On a alors $p \times q \equiv 1$ (47).

- (b) $p = inv(p) \Rightarrow p^2 \equiv 1$ (47) $\stackrel{\text{2b}}{\Rightarrow} p \equiv -1$ (47) ou $p \equiv 1$ (47) $\stackrel{p \in A}{\Rightarrow} p = 46$ ou p = 1 Réciproquement 1 et 46 conviennent bien.
- (c) Pour tout entier p de A compris entre 2 et 45, il existe (d'après 3a) un entier de A **distinct** (d'après 3b) inv(p) tel que $p \times inv(p) \equiv 1$ (47), donc 45! $\equiv 1$ (47). On en déduit $46! \equiv 46$ (47) soit enfin $46! \equiv -1$ (47).